ApoE and Clusterin Cooperatively Suppress Aβ Levels and Deposition Evidence that ApoE Regulates Extracellular Aβ Metabolism In Vivo
نویسندگان
چکیده
Apolipoprotein E (apoE) and clusterin can influence structure, toxicity, and accumulation of the amyloid-beta (Abeta) peptide in brain. Both molecules may also be involved in Abeta metabolism prior to its deposition. To assess this possibility, we compared PDAPP transgenic mice that develop age-dependent Abeta accumulation in the absence of apoE or clusterin as well as in the absence of both proteins. apoE(-/-) and clusterin(-/-) mice accumulated similar Abeta levels but much less fibrillar Abeta. In contrast, apoE(-/-)/clusterin(-/-) mice had both earlier onset and markedly increased Abeta and amyloid deposition. Both apoE(-/-) and apoE(-/-)/clusterin(-/-) mice had elevated CSF and brain interstitial fluid Abeta, as well as significant differences in the elimination half-life of interstitial fluid Abeta measured by in vivo microdialysis. These findings demonstrate additive effects of apoE and clusterin on influencing Abeta deposition and that apoE plays an important role in regulating extracellular CNS Abeta metabolism independent of Abeta synthesis.
منابع مشابه
microRNA-33 Regulates ApoE Lipidation and Amyloid-β Metabolism in the Brain.
UNLABELLED Dysregulation of amyloid-β (Aβ) metabolism is critical for Alzheimer's disease (AD) pathogenesis. Mounting evidence suggests that apolipoprotein E (ApoE) is involved in Aβ metabolism. ATP-binding cassette transporter A1 (ABCA1) is a key regulator of ApoE lipidation, which affects Aβ levels. Therefore, identifying regulatory mechanisms of ABCA1 expression in the brain may provide new ...
متن کاملApoE and Aβ in Alzheimer’s Disease: Accidental Encounters or Partners?
Among the three human apolipoprotein E (apoE) isoforms, apoE4 increases the risk of Alzheimer's disease (AD). While transporting cholesterol is a primary function, apoE also regulates amyloid-β (Aβ) metabolism, aggregation, and deposition. Although earlier work suggests that different affinities of apoE isoforms to Aβ might account for their effects on Aβ clearance, recent studies indicate that...
متن کاملHuman apoE isoforms differentially regulate brain amyloid-β peptide clearance.
The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease (AD). The APOE ε4 allele markedly increases AD risk and decreases age of onset, likely through its strong effect on the accumulation of amyloid-β (Aβ) peptide. In contrast, the APOE ε2 allele appears to decrease AD risk. Most rare, early-onset forms of familial AD are caused b...
متن کاملHaploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis.
The ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD). Evidence suggests that the effect of apoE isoforms on amyloid-β (Aβ) accumulation in the brain plays a critical role in AD pathogenesis. Like in humans, apoE4 expression in animal models that develop Aβ amyloidosis results in greater Aβ and amyloid deposition than with apoE3 expr...
متن کاملAging reduces glial uptake and promotes extracellular accumulation of Aβ from a lentiviral vector
We used a lentiviral system for expressing secreted human Aβ in the brains of young and old APOE knock-in mice. This system allowed us to examine Aβ metabolism in vivo, and test the effects of both aging and APOE genotype, two of the strongest risk factors for Alzheimer's disease. We injected the Aβ1-42 lentivirus into the motor cortex of young (2 month old) and old (20-22 month old) APOE3 and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 41 شماره
صفحات -
تاریخ انتشار 2004